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Derivation of low-temperature expansions for Ising model VIII.
Ferromagnetic and antiferromagnetic polynomials for the
honeycomb-triangular system

M F Sykes, M G Watts and D S Gaunt
Wheatstone Physics Laboratory, King's College, Strand, London WC2R 2LS, UK

Received 9 May 1975

Abstract. The principle of partial code balance and the property of latent symmetry of the
honeycomb-triangular code system are used to derive five new ferromagnetic polynomials
¥, through ,, for both the triangular and honeycomb lattices. For the honeycomb
lattice the corresponding antiferromagnetic polynomials though 5, are also derived.

1. Introduction

In this paper we study the derivation of ferromagnetic polynomials for the triangular
lattice ; the method used provides the corresponding partial codes and therefore an
equivalent number of ferromagnetic and antiferromagnetic polynomials for the honey-
comb lattice. We apply the general theory described in the previous papers of Sykes
et al (1965, 1973a, b, ¢, d, e, 1975, to be referred to as [-VII), particularly II and VII; a
general introduction and justification is given in VII.

We apply the techniques described in VII: the principle of partial balance and the
property of latent symmetry. We also introduce the concept of a convex region which
is fundamental to our treatment of the configurational problem.

In figure 1 we illustrate the configurations that contribute to the coefficient of u° for
the triangular lattice, and which collectively constitute . For such a small value of w
(the power of u) this example cannot be considered as typical, but already certain general
features can be noticed. In particular the maximum power of u (4’) corresponds to a
configuration (number 1) with a strictly convex contour (defined precisely in §2). The
next highest power corresponds to three configurations, two (numbers 2 and 3) of which
are strictly convex and one (number 4) is not ; for this latter the concavity is limited to
the presence of a re-entrant obtuse angle in the contour. Further examples of this type
of concavity occur in g°. At u* a more severe departure from strict convexity occurs
in number 11 which exhibits two adjacent re-entrant obtuse angles. We describe terms
not far removed from the strict convexity of numbers 1, 2 and 3 as essentially convex.
In the region of ¥ characterized by near maximum values of the power of y, and for
which configurations are strictly convex, many general results may be given. These
results also hold when the configurations are not quite convex (essentially convex); the
precise conditions which determine those concavities which are allowable depend on
the property considered, some results requiring more stringent limitations than others;
we use the term essentially convex to describe those configurations which may be treated
as convex for a property under consideration. The length of the convex region in y,
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Figure 1. Configurational structure of ¢, on the triangular lattice.
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that is the range of powers of u throughout which the configurations may be treated as
essentially convex, will vary from property to property. We elaborate on these ideas,
and make them more precise, in § 2 where we examine certain geometrical properties
of the triangular lattice.

As the power of u decreases the connected configurations can exhibit more extreme
departures from convexity and we enter the concave region. In u* the separated con-
figuration (number 13) has two components which are strictly convex ; this illustrates
a property we shall exploit : each time the number of components increases the individual
components tend to be more convex than other configurations in the same region. In
our example the ferromagnetic polynomial has a concave region, represented by u*.
Finally y, terminates with a triplet of strictly convex components.

2. Geometrical properties

We now summarize certain elementary properties of the infinite triangular lattice which
are more or less evident and find their origin deep in the literature of graph theory. We
assume a general familiarity with the theory of duality (see, for example, Syozi 1972). We
recall that for any perturbation of the ordered state the perturbed spins may be regarded
as defining the interior of a closed graph conventionally drawn on the dual lattice (the
honeycomb lattice), superimposed in the usual way. The length of this closed graph,
measured by the total number of constituent edges, is the power of the temperature
variable z and in our notation this power is represented by 2w. We illustrate in figure 2

Figure 2. Example of a configuration on the triangular lattice with Ising perimeter w = 22.
The contour (......... ) is of length p = 16. The dual on the honeycomb lattice (~—~—~— )
has 44 edges.

a perturbation of 12 spins forming a three-component graph. One component has a
hole in it (defined in VII, §4). To define the contour suppose every elementary triangle
of the lattice coloured A if it has three perturbed spins as its vertices, coloured B other-
wise. Form a sum by assigning the value + 1 to every bond in the configuration common
to only one triangle of colour B, + 2 to every bond common to two triangles of colour B,
and zero otherwise. The total sum over all bonds we define as the length of the conrour
of the configuration. With this convention the first component of the graph in figure 2
contributes 14, the second 2, the third 0. The contour is represented geometrically by
the closed curve on the dual shrunk or expanded towards the nearest perturbed spins.
Denoting the length of the contour by p we have the elementary relation

w=p+3c-3h=p+3k (2.1)
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where « is the discriminant of the configuration, a quantity we have already introduced
in VII (equation (4.5)) and which also arises in the theory of the triplet model (Sykes and
Watts 1975).

The closed curve delineated by the contour does not necessarily pass through all
the perturbed spins. We call spins through which the contour passes contour spins and
the remainder internal spins. The contour may pass through a spin once, twice or three
times. Denoting the number of these three classes of contour spins by p,, p,, p; respec-
tively, and the number of internal spins by p,, we have the elementary relations

S=pot+p1+p:+p; (2.2)
p = p1+2p;+3p;. (2.3)
We shall take it as evident without a formal demonstration that for the temperature or
u-grouping for which w (and therefore p)is fixed, the configurations with a near maximum

number of spins correspond to contours for which x = 1 and p, = p; = 0. In this
latter case we have the result

§=potp

or
po=s—w+3 2.4)
(p2=p3=0)

The ferromagnetic polynomials for the triangular lattice through ¢ are given in IV.
The general calculation was there based on an analysis of the honeycomb polygons which
were used to deduce the terms corresponding to near maximum spin. The transformed
linkage rule (2.1) in its contour form enables these terms to be re-classified as polygons
on the triangular lattice. The maximum term always corresponds to an absolutely
convex polygon and the general pattern of the convex end is found to conform to the
scheme:

Yom = ™ Q+24p™ " +128u" 2+ ... m> 0
Wemer = ™ m34+27u" 414707 24 .

Vemes = #3726+ 427 ' +198u~ 24 ...

Vomes = 2 311+ 14p 48T 24

Vomea = po" 7T 6+ 4207 419807 4 .
Vomes = w73 A3 12T 4+ 1470 4 L

(2.5)

From (2.5) and (2.2-3) it follows that for any /5, Y3+ 1, Y34 , the number of coefficients
in the region limited by the restriction p, = p; = 0 of (2.4) is (I—1). For example .in
Yo (figure 2), I = 3 and the configurations corresponding to s = 7 and s = 6 have no
spins through which the contour passes more than once. The configurations at s = 6
are however still connected (one-component). It follows from (2.5) that the number of
coefficients for which this connected property holds in any Waj, Wiy isj—2; it suffices
to consider a single isolated spin with the leading term of the ¥ three places earlier in
(2.5). The first holes appear as elementary hexagonal holes; if such a hole occurs in the
coefficient of u“4* then by placing a spin in it we obtain a configuration in u®~2x**! in
contrast to a separated spin which if deleted yields a configuration in u®~3y*~!. The
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onset of holes is therefore two coefficients after the onset of separated configurations.
Denoting by [x] the integer part of x we summarize these results:

Iny,
Length of region for which p, = p; = 0: Gnl—1
Length of region without separated configuration: [(n+1)]— (2.6)
Length of region without holes: (A(n+1)].

Now we have shown in VII that in the region where all the graphs are connected the
coefficients in s, are determined completely by the principle of partial balance and
patent symmetry; from (2.6) this implies that the last [3(n+ 1)]—2 coefficients are so
determined. As the number of spins decreases the contours can become increasingly
concave ; however the first separated configurations will be essentially convex since
they correspond to doublets whose components are selected from the convex end of
earlier Y. The same restrictions apply initially to holes: if the hole is removed by in-
serting a spin the resultant graph will be in the convex region of an earlier . The
number of holes is therefore calculable initially using (2.4), each interior point cor-
responding to one hole. The number of coefficients for which the contribution of holes
(x = 0) can be supplied in this way is limited by (2.6) applied to ¥,_ ;. To add further
coefficients it is also necessary to provide the separated configurations (x = 2) and we
describe a method of doing this in the next section.

3. Separated configurations in the convex region

The problem of calculating the number of strong embeddings of a multicomponent
graph is one of classic difficulty. For the triangular lattice we have developed specialized
techniques; a detailed treatment of the graph-theoretical background would require a
long digression ; since we are primarily concerned with the explicit derivation of ferro-
magnetic polynomials we shall only describe the general principles of the methods used
and their practical application.

The problem of calculating the lattice constant of a two-component graph rests
essentially on finding the number of embeddings of one component excluded by an
embedding of the other. (Throughout the present section we shall treat different space-
types of isomorphic graphs as distinct ; this is not essential but avoids having to sum over
all space-types at each stage.) Suppose G and G’ are any two graphs (and as usual we
denote their respective lattice constants by the same symbols): we can define their
respective exclusions by writing the total number of embeddings of the (separated) two-
component graph G, G':

NG(NG'—E(G', G)) = NG(NG—E(G, G)) (3.1)

where E(G', G) is the number of embeddings of G' excluded by G. By symmetry
GE(G', G) = G'E(G, G'). In general it is not possible to give an explicit expression for
E(G', G). The exception is in the convex region for which we quote, without proof, a
graph-theoretic result.

Theorem

If G and G’ are any two absolutely convex graphs on the triangular lattice with n, n’ spins
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and o, o' Ising perimeters (the powers of u) respectively, then

E(G,G) EG,G)
G = G

=i+(n+n)+How+o)+iow. (3.2)

In the restricted enunciation above the theorem is of limited application; in fact it
holds for many pairs of graphs which are not absolutely convex. We shall regard G as
convex with respect to G’ (and the converse) if the theorem holds for the separated graph
[G, G']. Although there are many mutually convex pairs of graphs, including cases for
which neither G nor G' is absolutely convex, the theorem fails if it is possible to form
a hole (defined precisely in VII, § 4) by the superposition of some pair of embeddings of
G and G’ (the term superposition being defined as the strongly embedded graph whose
vertex set is the union of the vertex sets of the respective embeddings of G and G').

If we particularize (3.2) to the case when G’ is a single spin by substituting s’ = 1,
' = 3 we obtain for the spin exclusion Eg of a convex graph

Es=s+w+3 (3.3

where s and  refer to the excluding graph. As we move down the convex region of any
¥ the application of (3.3) is first limited by the possibility of superpositions of the type:

G’ (f-fault)

It can be proved that the validity of (3.3) is restored by assigning a weight of — 1 to such
superpositions. We denote the number of f-faults in G by fand write

Es=s5+w+3-f. (3.4)

As we move further down  towards the concave region the possible faults that could
giverise to a hole increase in complexity ; faults also occur that can give rise to more than
one hole. A superposition with h holes must be assigned a weight of —h. By a detailed
classification of possible faults a practical working formula can be derived for the convex
region. As a second example we substitute in (3.2) the parameters for the bond (s' = 2,
" = 5) and obtain for the bond exclusion Eg of a convex graph

Eg = 3s+4w+15. (3.5)

The validity of this formula is restricted by more stringent limitations on the allowable
departures from absolute convexity of G. The first fault to occur in i as we move down
the convex region is of the type:
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As before the validity of (3.5) is restored by assigning an extra weight of —1 to such
superpositions. At the same time corrections can be made for f-faults by noticing that
there are five embeddings of a bond that can give rise to a hole in the vicinity of an f-fault.
The range of validity can be extended by writing

Eg=3s+4w+15—g-5f (3.6)

If the theory is applied successively to all possible doublets G, G’ in a field grouping
(n+n = constant) the most difficult cases will correspond to n ~ n’ and the corrections
that must be made are very detailed. However, if the doublets are treated in the order
they arise for the temperature grouping (w+ ' = constant) a simplification results; in
general as the number of spins in G’ increases, so G is more likely to be convex ; thisis a
consequence of the geometrical properties described in § 2.

For example the polynomial ¥, has six coefficients, u2! down to u'¢, composed of
only connected configurations; doublets appear in u'5 down to u'? for which G’ is a
single spin (" = 3) and therefore G corresponds to some graph in the coefficients of
highest spin in 5 : at u'? doublets for which G’ is a bond (w’ = 5) occur; at this point G
corresponds to the terms of maximum power of u in ¥, for doublets with a bond, but
four below maximum power of u for doublets with a spin. Thus the bond will be first
associated with strictly convex graphs at a point where the spin is already associated with
graphs four displacements below the strictly convex region. The corrections required
to (3.5) are therefore required later than those to (3.3) and this compensates for their
greater complexity.

As afurther application the result (3.2) can be used to count multicomponent graphs.
By the general methods of Sykes et al (1966) any multicomponent graph may be made to
depend (essentially, mutatis mutandis, by successive applications of Theorem 2, § 3) on
the number of embeddings of two-component graphs. In general the calculation of a
multicomponent graph G, G', G", .. . will lead to doublets G, G* for which G* cannot be
regarded as convex. For example if G* has a concavity of the type represented by the
J-fault there can be no graph G, even strictly convex, that does not admit of at least one
superposition that contains a hole. Special procedures can be developed to overcome
these difficulties in practice and useful working formulae derived. As an example of
these we quote results for a triplet [G, G', G"] and quadruplet [G, G, G”, G} when
G', G" and G” are all single spins and G is strictly convex.

In an obvious notation

Ess = 3(n*+2nw+ o’ + 13n+ 150 + 42) (3.7)
Esss = —&(n*+3n*w + 3no? + 0> + 30n? + 66nw + 36w? + 3051+ 383w + 1044).  (3.8)

These formulae will first be required as we move down y,, at the point where G is
strictly convex, being in the maximum power of y in ¥, _ ¢ or ¥, _  respectively. Depar-
tures from convexity can be allowed for by introducing the appropriate corrections;
for example the correction to (3.7) for f- and g-faults is found to be

—2n+2w+17)f+5f2—g. (3.9)

The derivation of all the formulae and corrections required for the present application
is a long and detailed one. In practice we have avoided the necessity of calculating
doublets by using latent symmetry and balance since at each stage these are the most
numerous. We have used the methods outlined to calculate all the multicomponent
graphs required to determine i through ,,. We have been able to calculate the 550
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three-component and 17 four-component graphs that occur in the coefficient of u'? in
/51 and this represents the most extensive application we have made. We have made
a further application of (3.3) to the problem of enumerating all the connected configur-
ations by computer; it is a straightforward matter to count connected configurations
with a fixed number of spins using the methods outlined by Martin (1974); the machine
generation of configurations with a fixed contour can be achieved by imposing a restric-
tion on the number of sites adjacent to each configuration. Since the corrections to (3.3)
are all negative the number of adjacent sites cannot exceed w+ 3; by limiting this site
perimeter to 24 we have generated all the connected partial codes through ¥/, .

4. General code pattern for temperature grouping

To determine the general code pattern appropriate for the temperature grouping or
Y, we start with the algebraic code system defined by III (equation (2.1))

(}‘9 o, ﬂ, )’) = (33—'2C_.]a 38—3c—2_]a js C)

@.1)
o =0, B =0, y 2 0.

The problem is to find the number of algebraic codes in the coefficient of y*u® which
we denote by S2. It follows geometrically from the illustration of II1 (§ 2) that « = 3 for
any graphical code (a code for which at least one graph can be found on the shadow
lattice). Further a code cannot be graphical if its image about the centre of symmetry
in the even and odd regimes ((4.8) of V1I) would imply another code witha < Oor f < 0
ory < 0. A detailed examination of these restrictions yields the result

min{l,s—1+1) ifow =3l
S§¢ = {min(l—-1, s~ fw=31+1 4.2)
min{/, s— ) ifw=30+2

Since we are primarily concerned with the convex region (s large) these expansions may
be simplified to

[ ifw=3lor3i+2

sg:{ 4.3)
-1 ifw = 3l+1

Thus in the convex region the number of algebraic codes that need be considered is
independent of s. In the concave region it follows from (4.2) that fewer codes need be
considered than implied by (4.3). Any code is determined by three parameters but the

condition that w and s are constant reduces these to one. It is necessary to distinguish
odd and even values of w.

0dd regime (» odd): In p*u” there is a central code
(s+30+3 o+ 1k jo-15s-tw+d) (4.4)

and denoting the number of displacements above this central code by 4 the set of codes
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will be
(s+io+i+ 4 to+13+34 Jo—15-34, s—fw+i+4)
A=0,+1, +£2...

(4.5)

and the range of values of 4 is limited by (4.3). Forexampleatw =21,/ =7and1 =0,
+1,+£2, +3.

Even regime (w even): In p*u” there are two central codes. Those above the centre of
symmetry are given in ascending order of class by

(s+io+ito+34 d0-34s—30+i)

(4.6)
A=1,23....
and those below in descending order by
(s+io+1+430+3+340-3-34s~Jo+1+4) @)

A=—-1-2,-3...

with the range of values of A limited by (4.3). For example at w = 20, | = 6 and
A=1273,in(46)and — 1, —2, —3,in (4.7).

We illustrate in figures 3(a) and 3(b) grids of the code patterns corresponding to ¥,
and ¥, respectively. We have shown in VII (§§ 3 and 4) that in the region where all the
shadow graphs are connected (k = 1} the code system is completely determined by
successive applications of the principle of partial balance and patent symmetry. By

s =27 2/_§ 29 30 31 32 33 34 35 36 37

I\,/ }. = 3
Fou) 2
| 7 & 1
(a) 1 i ) -
} ~ | LY 1
] / i(\/ ) -2
L 3
s =26 ;\7 28 29 30 31 32 33
) B -
’ /VI\ 2
(b) d
{ P e’ ; _1
l / ‘Lr\/ -2
e l’r /i d b é -3

Figure 3. (@) Grid of codes in y,,(y) illustrating the transmission of information (odd
regime). o, algebraic code, @, related sequence of codes. Vertical arrows correspond to an
application of patent symmetry, inclined arrows to an application of the principle of partial
balance. (b) Grid of codes in yr,4(y) illustrating the transmission of information (even
regime).
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detailed examination the path taken by information can be traced backwards from any
code. In the odd regime there is one central code of class s — jw + 1 (a secondary code)
which is determined by balance and the only code required that lies in ¥, is the code of
class s —iw—14 in p*~ ! (one below centre); this is a primary code but is determined by
symmetry from the secondary code one above centre. The next code above centre is of
class s— 3w + 14 and the only code in ¥, required to complete it by partial balance is the
primary code of class s — 2w — 44 (two below centre) in 4°~ 2. The next code above centre
of class s — Jw + 21 requires the code of class s — 3w — 73 in i~ * (three below centre) and
$0 on.

In the even regime the central code above centre of class s — 3w + | requires the code
of class s—4w—4 in p*~? (two below centre). The next code above centre of class
s — o+ 2 requires the code of class s—3w —6 in p°*~* (three below centre) and so on.

By applying the results to the grid of figure 3, it is found that the coefficient of any
code can be traced back by ever increasing steps in s and at each stage A increases by
unity, But the grid width is finite. It follows that eventually the code required in ,,
falls outside the grid and is therefore zero. This implies that all the information is
supplied by the  through y,_,. In the convex region of patent symmetry the poly-
nomial may be filled in completely from the previous . At the point where the sym-
metry becomes latent new information must be supplied for chosen values of the dis-
criminant to restore the symmetry of the code pattern.

5. Explicit extension of the temperature grouping

To extend the temperature grouping on the triangular lattice and derive ferromagnetic
polynomials we have combined the three techniques described in preceding sections
and in VII: partial balance, latent symmetry and the special properties of the convex
region. To complete the convex end of the polynomials by balance we have restored
the symmetry of the code patterns by providing the contribution corresponding to
connected configurations by computer enumeration and the contributions correspond-
ing to configurations with three or more components by the general methods of § 3;
the contributions from configurations with a discriminant of two (doublets) then follow
algebraically by the methods of § 4.

We have determined all the partial codes F¢ for the triangular lattice for all n through
@ = 21. These provide all the sublattice polynomials (I1, § 1 and equation (1.7)) for the
honeycomb lattice. The partial codes and sublattice polynomials are too extensive to
be quoted in full. We give in the appendix the ferromagnetic polynomials ¥, (5. ¥ 0,
Y10, V2, for the triangular and honeycomb lattices. For these the values of ¥, (u = 1)
and 0y,/du (u = 1) are in agreement with the exact solution for the zero-field partition
function and the spontaneous magnetization. The corresponding ferromagnetic
susceptibility can be extended by five coefficients in each case to continue 1V, equdtions
(3.3)and (3.4):

dh = ... +50369 760u'” + 56 095 7761’8 + 484 296 732u!° + 571 273 344120
+4628 107 21602 + ... (5.1)
Yo = ... +2154378 8162'7 +8 395 571 712218 + 32 639 750 676219

+ 126 625 222 2002%° + 490 300 659 6922°! + .. .. (5.2)
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The partial codes determine five new antiferromagnetic polynomials to supplement I
(appendix 5), and IV (equation (3.6)):
2y, = 2866170, +46 1436, + 57665
2y3g = 1080 6415 +469 3186, + 30 48860, + 7230,
2Yo = 27298890, + 536 38805+ 12 9606 (5.3)
Y3 = 10297 0442+ 4 850 1396, + 430 14930, + 3 2160,
2y, = 2700327560, +6216 1116, +238 1110, + 35540,

and from these, or from (5.1) and (5.2) using 11 (4.22), the corresponding antiferromagnetic
susceptibility can be extended by five coefficients to continue 1V, equation (3.5):

Ahe = ... +2865216y'7 +9 470 784y 8 4+ 31 525 524y'° + 105 594 912)%°
+355673804y% + ... (5.4)
Acknowledgment
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Appendix

Ferromagnetic polynomials y(u) (for earlier terms see appendix to 1V?).

Triangular lattice

Wiy = 324 42707 + 14722 + 507u + 1401420 +2943'° + 541241 + 8 67917
+11784u'6 + 13 41935 + 11 103 % + 6 7414 —9 036412 — 21 621 1!
—42315u'%~111094° +30 825u° + 63 870u7 + 27 555u°

Uig = 2027+ 2475 4 128175 + 496124 + 1 45823 + 3 42422 + 6 93641 + 11 9692°
+19 16841 +26 038118 +31 09017 +29 877416 + 23 046415 + 2 1304y
~30902u'*— 658292 — 111 460u' ' — 48 6183u'% +43 868%u°
+ 165 89441® — 307 4767 — 7 79634°

Yo = 330 +27u%° + 14778 + 57927 + 1 719426 + 4 33825 +9 138124 + 17 115423
+28 809172 +43 893421 + 60 54320 + 71 820117 + 77 325,18
+64 830p'7 +3894611° — 2535915 —80 940u'4 — 1953123
— 224955012 — 136 9564 +205 38610 + 375 4831 — 58 6684:°
+437997,7

t The coefficient of u® ir ,, for the honeycomb lattice is there printed with incorrect sign and should read
—~74083%u® in agreement with L, given in I (appendix).
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Yao = 6% +421°2 + 216" + 798430 +2 4124%° + 6 060128 + 13 128427 +25 6262
+44 514p%° +72 105%* + 105 816423 + 142 95622 + 171 300u2!
+ 187 158u%° + 1754164 ° + 120 099418 + 23 730117 ~ 123 55216
~288 768u'° — 563 163u'* — 549 69043 — 466 116u'2 +473 976"
+663 288u'° +408 0724° — 1 907 84648 — 275 18447
Yoy = 177 + 1447 + 8707 +39203* + 1 34103 + 3 9181°2 + 9 63243 +21 0833°
+410404%° +73 57828 + 121 804427 + 186 235426 + 266 34125
+ 347 250u7* + 420 677173 + 456 575132 + 456 24642 + 345 275,20
+1776114"° — 110 316p'® — 440 030" 7 — 961 349416 — 1 312 194"
— 1423 670u'%—779 2854 + 1 264 848412 +2 435 614" + 1 680 0304*°
~3019 3944° +4 905 02545 + 65 71817
Honeycomb Lattice
17 = 3%+ 21p*5 +108u*3 + 423t +142243% + 4 17037 + 10 89935 + 25 782433
+55107u" + 106 380p2° + 184 413u2” + 279 855u2% + 357 888 2>
+341 70612 + 103 503u° — 438 6001 " — 1 045 93515 — 711 801" 3
+ 1409 742,11 — 367 8784° + 16 12847
Yis = 2055+ Tu 2 + 433050 + 19648 + 7215u%6 + 2 3164** + 6 5954%2 + 17 039440
+402084°% + 87 0914%¢ + 173 84344°4 + 317 84532 + 529 2864430
+792 105u2% + 1 028 76751%° + 1 085 0594u2* + 708 809422
—398 4675u%° —2 171 76551"® — 3 392 069416 — 1 106 330414
+4905 5368u'* — 1 706 988411 + 120 844,° — 49546
Yio = 3u*7 +21p%7 + 108u°° +429u5% + 1 467u% +4 4314*° +12 114u%7 + 30 42045
+70 545u*% + 152 2204*" + 305 637u3° + 571 479437 +992 772438
+1588965u° +2 318 640u>" +3 018 270%° + 3 324 45927
+2706 057u** +487 4287 ~ 3 777 609! — 8 836 677" —9 879 492,17
+589338u"° 416 3270321 — 7495464 + 776 475,° — 9 83147
Wao = 1300+ 1355%% 4+ 73552 + 3105050 + 1 0994458 + 3 44756 +9 771 5% + 25 446,52
+61 5001°° + 138 888*® + 294 51144*S + 586 908u** + 1 101 56244
+19422454%° +3209 9314°8 +4 944 511436 + 7017 77134
+9029 640312 + 10 163 8834%° + 9 107 567418 + 4 374 1502
—5401 54534 — 19 734 007422 — 31 663 8354420 — 24 921 147,
+155036611'°+51659 58731 — 31 390 22044 + 4 480 345410
—114 04348
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Sy = U3 12070 + 64u5° + 278157 +999455 +3 18253 +9 16545 + 24 306452
+60 044157 + 139 1164°5 + 303 995452 + 628 456451 + 1 232 1664*°
+2292792u%7 +4 046 141445 + 6 765 535u* + 10 676 044y *!

+ 15 824 84643 + 21 840 760137 + 27 624 314435 + 31 188 812432
+29 46507243 + 18 559 8192% — 4 700 23427 — 41 340 065425

— 83441 107422 — 101 586 109! —47 879 1541° +91 306 307"
+153 554339415 — 125973 0771 ® + 23 835 698! ! — 1 007 0934°
+2428%y7
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