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Derivation of low-temperature expansions for Ising model VIII. 
Ferromagnetic and antiferromagnetic polynomials for the 
honeycomb-triangular system 

M F Sykes, M G Watts and D S Gaunt 
Wheatstone Physics Laboratory, King’s College, Strand, London WCZR 2LS, UK 

Received 9 May 1975 

Abstract. The principle of partial code balance and the property of latent symmetry of the 
honeycomb-triangular code system are used to derive five new ferromagnetic polynomials 

for both the triangular and honeycomb lattices. For the honeycomb 
lattice the corresponding antiferromagnetic polynomials though 4; are also derived. 

through 

1. Introduction 

In this paper we study the derivation of ferromagnetic polynomials for the triangular 
lattice ; the method used provides the corresponding partial codes and therefore an 
equivalent number of ferromagnetic and antiferromagnetic polynomials for the honey- 
cnmb lattice. We apply the general theory described in the previous papers of Sykes 
et al(1965, 1973a, b, c, d, e, 1975, to be referred to as 1-VII), particularly I1 and V I I ;  a 
general introduction and justification is given in VII. 

We apply the techniques described in VI1 : the principle of partial balance and the 
property of latent symmetry. We also introduce the concept of a convex region which 
is fundamental to our treatment of the configurational problem. 

In figure 1 we illustrate the configurations that contribute to the coefficient of u9 for 
the triangular lattice, and which collectively constitute ij9. For such a small value of w 
(the power of u) this example cannot be considered as typical, but already certain general 
features can be noticed. In particular the maximum power of p (g’) corresponds to a 
configuration (number 1) with a strictly convex contour (defined precisely in 8 2 ) .  The 
next highest power corresponds to three configurations, two (numbers 2 and 3) of which 
are strictly convex and one (number 4) is not; for this latter the concavity is limited to 
the presence of a re-entrant obtuse angle in the contour. Further examples of this type 
of concavity occur in p5. At p4 a more severe departure from strict convexity occurs 
in number 11 which exhibits two adjacent re-entrant obtuse angles. We describe terms 
not far removed from the strict convexity of numbers 1, 2 and 3 as essentially convex. 
In the region of $ characterized by near maximum values of the power of ,U, and for 
which configurations are strictly convex, many general results may be given. These 
results also hold when the configurations are not quite convex (essentially convex); the 
precise conditions which determine those concavities which are allowable depend on 
the property considered, some results requiring more stringent limitations than others ; 
we use the term essentially convex to describe those configurations which may be treated 
as convex for a property under consideration. The length of the convex region in $, 
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Figure 1. Configurational structure of G9 on the triangular lattice. 
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that is the range of powers of p throughout which the configurations may be treated as 
essentially convex, will vary from property to property. We elaborate on these ideas, 
and make them more precise, in $ 2  where we examine certain geometrical properties 
of the triangular lattice. 

As the power of p decreases the connected configurations can exhibit more extreme 
departures from convexity and we enter the concave region. In p4 the separated con- 
figuration (number 13) has two components which are strictly convex; this illustrates 
a property we shall exploit : each time the number of components increases the individual 
components tend to be more convex than other configurations in the same region. In 
our example the ferromagnetic polynomial has a concave region, represented by p4. 
Finally t,h9 terminates with a triplet of strictly convex components. 

2. Geometrical properties 

We now summarize certain elementary properties of the infinite triangular lattice which 
are more or less evident and find their origin deep in the literature of graph theory. We 
assume a general familiarity with the theory ofduality (see, for example, Syozi 1972). We 
recall that for any perturbation of the ordered state the perturbed spins may be regarded 
as defining the interior of a closed graph conventionally drawn on the dual lattice (the 
honeycomb lattice), superimposed in the usual way. The length of this closed graph, 
measured by the total number of constituent edges, is the power of the temperature 
variable z and in our notation this power is represented by 2w. We illustrate in figure 2 

Figure 2. Example of a configuration on the triangular lattice with Ising perimeter w = 22. 
The contour (.........) is of length p = 16. The dual on the honeycomb lattice ( - - - - - - )  
has 44 edges. 

a perturbation of 12 spins forming a three-component graph. One component has a 
hole in it (defined in VII, $ 4). To define the contour suppose every elementary triangle 
of the lattice coloured A if it has three perturbed spins as its vertices, coloured B other- 
wise. Form a sum by assigning the value + 1 to every bond in the configuration common 
to only one triangle of colour B, + 2 to every bond common to two triangles of colour B, 
and zero otherwise. The total sum over all bonds we define as the length of the contour 
of the configuration. With this convention the first component of the graph in figure 2 
contributes 14, the second 2, the third 0. The contour is represented geometrically by 
the closed curve on the dual shrunk or expanded towards the nearest perturbed spins. 
Denoting the length of the contour by p we have the elementary relation 

= p + 3 ~ - 3 h  = p+3K (2.1) 
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where K is the discriminant of the configuration, a quantity we have already introduced 
in VI1 (equation (4.5)) and which also arises in the theory of the triplet model (Sykes and 
Watts 1975). 

The closed curve delineated by the contour does not necessarily pass through all 
the perturbed spins. We call spins through which the contour passes contour spins and 
the remainder internal spins. The contour may pass through a spin once, twice or three 
times. Denoting the number of these three classes of contour spins by p l ,  p 2 ,  p3 respec- 
tively, and the number of internal spins by p o ,  we have the elementary relations 

s = P O + P l + P Z + P 3  

P = P1+2P2+3P3. 

We shall take it as evident without a formal demonstration that for the temperature or 
u-grouping for which w (and therefore p )  is fixed, the configurations with a near maximum 
number of spins correspond to contours for which K = 1 and p 2  = p3 = 0. In this 
latter case we have the result 

s = P O + P  

p o  = s--w+3 (2.4) 

c p 2  = P 3  = 0). 

or 

The ferromagnetic polynomials for the triangular lattice through $ 1 6  are given in IV. 
The general calculation was there based on an analysis of the honeycomb polygons which 
were used to deduce the terms corresponding to near maximum spin. The transformed 
linkage rule (2.1) in its contour form enables these terms to be re-classified as polygons 
on the triangular lattice. The maximum term always corresponds to an absolutely 
convex polygon and the general pattern of the convex end is found to conform to the 
scheme : 

= p3m2(2+24p-1+128p-2+ . . .  m >> 0 

$ 6 m + l  = p3"2+m(3+27p-1+147p-2+ . . .  
$ 6 m + Z  = p 3 m 2 +  Zm ( 6 + 4 2 ~ - ' + 1 9 8 p - ' - t  . . .  

$ 6 m + 3  = p3m 2 + 3 m + l  ( 1  + 14p- ' f87p- '+  . . . 
$ 6 m + 4  = p 3 m 2 + 4 m +  1 (6+42p-'+ 198p-'+ . . . 
$ 6 m + 5  = p 3 m 2 +  5 m +  2 (3 + 27p- + 147,~-  ' + . . . . 

From (2.5) and (2.2-3) it follows that for any $ 3 1 ,  $311- $31+ 2 the number of coefficients 
in the region limited by the restriction p 2  = p 3  = 0 of (2.4) is (1- 1). For example .in 
$9 (figure 2), 1 = 3 and the configurations corresponding to s = 7 and s = 6 have no 
spins through which the contour passes more than once. The configurations at s = 6 
are however still connected (one-component). It follows from (2.5) that the number of 
coefficients for which this connected property holds in any $ 2 j r  t,hzj- is j - 2 ;  it suffices 
to consider a single isolated spin with the leading term of the $ three places earlier in 
(2.5). The first holes appear as elementary hexagonal holes ; if such a hole occurs in the 
coefficient of uops then by placing a spin in it we obtain a configuration in uo-3ps+1 in 
contrast to a separated spin which if deleted yields a configuration in u o - 3 p - 1 .  The 
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onset of holes is therefore two coefficients after the onset of separated configurations. 
Denoting by [XI the integer part of x we summarize these results : 

In $n 

Length of region for which p z  = p 3  = 0 :  

Length of region without separated configuration : [+(ti + l)] - 2 

Length of region without holes : 

[in]  - 1 

(2.6) 

[ i (n  + I)]. 
Now we have shown in VI1 that in the region where all the graphs are connected the 
coefficients in t,bn are determined completely by the principle of partial balance and 
patent symmetry; from (2.6) this implies that the last [ i (n+  l)]  -2 coefficients are so 
determined. As the number of spins decreases the contours can become increasingly 
concave ; however the first separated configurations will be essentially convex since 
they correspond to doublets whose components are selected from the convex end of 
earlier $. The same restrictions apply initially to holes: if the hole is removed by in- 
serting a spin the resultant graph will be in the convex region of an earlier $. The 
number of holes is therefore calculable initially using (2.4), each interior point cor- 
responding to one hole. The number of coefficients for which the contribution of holes 
(K = 0) can be supplied in this way is limited by (2 .6)  applied to $,,- 3. To add further 
coefficients it is also necessary to provide the separated configurations (K = 2) and we 
describe a method of doing this in the next section. 

3. Separated configurations in the convex region 

The problem of calculating the number of strong embeddings of a multicomponent 
graph is one of classic difficulty. For the triangular lattice we have developed specialized 
techniques ; a detailed treatment of the graph-theoretical background would require a 
long digression ; since we are primarily concerned with the explicit derivation of ferro- 
magnetic polynomials we shall only describe the general principles of the methods used 
and their practical application. 

The problem of calculating the lattice constant of a two-component graph rests 
essentially on finding the number of embeddings of one component excluded by an 
embedding of the other. (Throughout the present section we shall treat different space- 
types of isomorphic graphs as distinct ; this is not essential but avoids having to sum over 
all space-types at each stage.) Suppose G and G‘ are any two graphs (and as usual we 
denote their respective lattice constants by the same symbols): we can define their 
respective exclusions by writing the total number of embeddings of the (separated) two- 
component graph G, G’: 

NG(NG’-E(G‘, G ) )  = NG’(NG-E(G,  G‘)) (3.1) 

where E(G’, G) is the number of embeddings of G’ excluded by G. By symmetry 
GE(G‘, G) = G’E(G, G’). In general i t  is not possible to give an explicit expression for 
QG’, G). The exception is in the convex region for which we quote, without proof, a 
graph-theoretic result. 

Theorem 

I f  G and G’ are any two absolutely convex graphs on the triangular lattice with n, n‘ spins 
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and w,  w’ Ising perimeters (the powers of U )  respectively, then 

-=-- - + + ( n  + n’) + %CO + w‘)  +&MO’. 
E(G’, G) E(G, G’) 

G’ G (3.2) 

In the restricted enunciation above the theorem is of limited application; in fact it 
holds for many pairs of graphs which are not absolutely convex. We shall regard G as 
convex with respect to G’ (and the converse) if the theorem holds for the separated graph 
[G, G’]. Although there are many mutually convex pairs of graphs, including cases for 
which neither G nor G’ is absolutely convex, the theorem fails if it is possible to form 
a hole (defined precisely in VII, 4 4) by the superposition of some pair of embeddings of 
G and G’ (the term superposition being defined as the strongly embedded graph whose 
vertex set is the union of the vertex sets of the respective embeddings of G and G’). 

If we particularize (3.2) to the case when G’ is a single spin by substituting s‘ = 1, 
w‘ = 3 we obtain for the spin exclusion E, of a convex graph 

Es  =s+ to+3  (3.3) 
where s and w refer to the excluding graph. As we move down the convex region of any 
$ the application of (3.3) is first limited by the possibility of superpositions of the type: 

G G’ (f-fault) 

It can be proved that the validity of (3.3) is restored by assigning a weight of - 1 to such 
superpositions. We denote the number off-faults in G byfand write 

E ,  = ~ + w + 3 - f .  (3.4) 
As we move further down $ towards the concave region the possible faults that could 
give rise to a hole increase in complexity ; faults also occur that can give rise to more than 
one hole. A superposition with h holes must be assigned a weight of - h. By a detailed 
classification of possible faults a practical working formula can be derived for the convex 
region. As a second example we substitute in (3.2) the parameters for the bond (s’ = 2, 
w’ = 5 )  and obtain for the bond exclusion EB of a convex graph 

E, = 3 ~ + 4 ~ +  15. (3.5) 
The validity of this formula is restricted by more stringent limitations on the allowable 
departures from absolute convexity of G. The first fault to occur in $ as we move down 
the convex region is of the type : 

G’ (g-fault) 
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As before the validity of (3.5) is restored by assigning an extra weight of - 1 to such 
superpositions. At the same time corrections can be made forf-faults by noticing that 
there are five embeddings of a bond that can give rise to a hole in the vicinity of anf-fault. 
The range of validity can be extended by writing 

E ,  = 3s + 4~ + 15 - 8- 55 (3.6) 

I f  the theory is applied successively to all possible doublets G, G‘ in afield grouping 
(n + n’ = constant) the most difficult cases will correspond to n 2: n‘ and the corrections 
that must be made are very detailed. However, if the doublets are treated in the order 
they arise for the temperature grouping (o + o’ = constant) a simplification results ; in 
general as the number of spins in G’ increases, so G is more likely to be convex ; this is a 
consequence of the geometrical properties described in 5 2. 

For example the polynomial t+b16  has six coefficients, p2’ down to p16, composed of 
only connected configurations; doublets appear in p15 down to p13 for which G’ is a 
single spin (of = 3)  and therefore G corresponds to some graph in the coefficients of 
highest spin in t + b 1 3 :  at p12 doublets for which G is a bond (U’ = 5 )  occur; at this point G 
corresponds to the terms of maximum power of p in t+bl for doublets with a bond, but 
four below maximum power of p for doublets with a spin. Thus the bond will be first 
associated with strictly convex graphs at a point where the spin is already associated with 
graphs four displacements below the strictly convex region. The corrections required 
to (3.5) are therefore required later than those to (3.3) and this compensates for their 
greater complexity. 

As a further application the result (3.2) can be used to count multicomponent graphs. 
By the general methods of Sykes er al(1966) any multicomponent graph may be made to 
depend (essentially, mutatis mutandis, by successive applications of Theorem 2, Q 3)  on 
the number of embeddings of two-component graphs. In general the calculation of a 
multicomponent graph G, G‘, G”, . . . will lead to doublets G, G* for which G* cannot be 
regarded as convex. For example if G* has a concavity of the type represented by the 
f-fault there can be no graph G, even strictly convex, that does not admit of at least one 
superposition that contains a hole. Special procedures can be developed to overcome 
these difficulties in practice and useful working formulae derived. As an example of 
these we quote results for a triplet [G, G’, G”] and quadruplet [G, G‘, G”, G”’] when 
G‘, G” and G”’ are all single spins and G is strictly convex. 

In an obvious notation 

Es,s = f i n 2  + 2nw + o2 + 13n + 1 5 0  +42) (3.7) 
= -&n3 + 3 n 2 0  + 3n02  +a3 + 30n2 + 6 6 n o  + 3602  + 305n + 383w + 1044). (3.8) 

These formulae will first be required as we move down IC/, at the point where G is 
strictly convex, being in the maximum power of p in t+bn-6 or I/J,,-~ respectively. Depar- 
tures from convexity can be allowed for by introducing the appropriate corrections ; 
for example the correction to (3.7) forf- and g-faults is found to be 

(3.9) 

The derivation of all the formulae and corrections required for the present application 
is a long and detailed one. In practice we have avoided the necessity of calculating 
doublets by using latent symmetry and balance since at  each stage these are the most 
numerous. We have used the methods outlined to calculate all the multicomponent 
graphs required to determine t+b through 1(/21. We have been able to calculate the 550 

- 3 2 n  + 2 0  + 1 7 ) f + + f 2  - g.  
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three-component and 17 four-component graphs that occur in the coefficient of p12 in 
i+hz1 and this represents the most extensive application we have made. We have made 
a further application of (3.3) to the problem of enumerating all the connected configur- 
ations by computer ; it is a straightforward matter to count connected configurations 
with a fixed number of spins using the methods outlined by Martin (1974); the machine 
generation of configurations with a fixed contour can be achieved by imposing a restric- 
tion on the number of sites adjacent to each configuration. Since the correctjons to (3.3) 
are all negative the number of adjacent sites cannot exceed w + 3 ; by limiting this site 
perimeter to 24 we have generated all the connected partial codes through $z . 

4. General code pattern for temperature grouping 

To determine the general code pattern appropriate for the temperature grouping or 
$, we start with the algebraic code system defined by I11 (equation (2.1)) 

(1,a,f l ,y) = (3s-2C-j, 3s-3C-2j,j, C) 

> 0, p > 0, y 2 0. 

The problem is to find the number of algebraic codes in the coefficient of psuw which 
we denote by Sr. It follows geometrically from the illustration of 111 (8 2) that a >, 3 for 
any graphical code (a code for which at least one graph can be found on the shadow 
lattice). Further a code cannot be graphical if its image about the centre of symmetry 
in the even and odd regimes ((4.8) of VII) would imply another code with a < 0 or p < 0 
or y e 0. A detailed examination of these restrictions yields the result 

min(1,s-I+l) ifo = 31 

if w = 31+ 1 

i f o  = 31+2. min(l, s - I) 

Since we are primarily concerned with the convex region (s large) these expansions may 
be simplified to 

if o = 31 or 31 + 2 

if o = 31+ 1 
s,w = (4.3) 

Thus in the convex region the number of algebraic codes that need be considered is 
independent ofs. In the concave region it follows from (4.2) thatfewer codes need be 
considered than implied by (4.3). Any code is determined by three parameters but the 
condition that o and s are constant reduces these to one. It is necessary to distinguish 
odd and even values of w. 

Odd regime (CO odd): In $pVJ there is a central code 

(s ++U ++, & + 13, $3 - I+, s-+U + 3) (4.4) 

and denoting the number of displacements above this central code by 1 the set of codes 
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will be 

( s + ~ w + i + I . , ~ w + l i + 3 A  ,iw-l:-3A, s - ~ w + ~ + A )  
(4.5) 

A = O ,  +1, + 2  . . .  
and the range of values of I is limited by (4.3). For example at w = 21,l = 7 and A = 0, * 1, +2,  +3. 

Even regime (w even): In p'p" there are two central codes. Those above the centre of 
symmetry are given in ascending order of class by 

and those below in descending order by 

(s+$o+l+i . ,+w+3+3A,$w-3-3i ,  s - h + l + A )  

E, = -1, -2, - 3 . . .  
(4.7) 

with the range of values of A limited by (4.3). For example at w = 20, 1 = 6 and 
A =  1,2,3,in(4.6)and -1, -2, -3,in(4.7). 

We illustrate in figures 3(a) and 3(b) grids of the code patterns corresponding to t+b2 
and t+b2,, respectively. We have shown in VI1 ($0 3 and 4) that in the region where all the 
shadow graphs are connected ( K  = 1) the code system is completely determined by 
successive applications of the principle of partial balance and patent symmetry. By 

s = 27 28 29 30 31 32 33 34 35 36 37 

( a )  

~ = 2 6  27 28 29 30 31 32 33 
3, = 3 

2 
(6 )  1 

- 1  
-2 
-3 

Figure 3. (a )  Grid of codes in +2,(p) illustrating the transmission of information (odd 
regime). 0, algebraic code, @, related sequence of codes. Vertical arrows correspond to an 
application of patent symmetry, inclined arrows to an application of the principle of partial 
balance. (b)  Grid of codes in + 2 0 ( p )  illustrating the transmission of information (even 
regime). 
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detailed examination the path taken by information can be traced backwards from any 
code. In the odd regime there is one central code of class s - h + 3 (a secondary code) 
which is determined by balance and the only code required that lies in is the code of 
class s-3w- 13 in ps- (one below centre); this is a primary code but is determined by 
symmetry from the secondary code one above centre. The next code above centre is of 
class s - required to complete it by partial balance is the 
primary code of class s - $ - 4$ (two below centre) in p s - 3 .  The next code above centre 
of class s -h + 23 requires the code of class s - i w  - 73 in ps- (three below centre) and 
so on. 

In the even regime the central code above centre of class s --+w + 1 requires the code 
of class s-&-4 in p s - 2  (two below centre). The next code above centre of class 
s - 3w+2 requires the code of class s-3w-6 in (three below centre) and so on. 

By applying the results to the grid of figure 3, i t  is found that the coefficient of any 
code can be traced back by ever increasing steps in s and at each stage A increases by 
unity. But the grid width isfinite. I t  follows that eventually the code required in 
falls outside the grid and is therefore zero. This implies that all the information is 
supplied by the $ through 1 .  In the convex region of patent symmetry the poly- 
nomial may be filled in completely from the previous $. A t  the point where the sym- 
metry becomes latent new information must be supplied for chosen values of the dis- 
criminant to restore the symmetry of the code pattern. 

+ 14 and the only code in 

5. Explicit extension of the temperature grouping 

To extend the temperature grouping on the triangular lattice and derive ferromagnetic 
polynomials we have combined the three techniques described in preceding sections 
and in VI1 : partial balance, latent symmetry and the special properties of the convex 
region. To complete the convex end of the polynomials by balance we have restored 
the symmetry of the code patterns by providing the contribution corresponding to 
connected configurations by computer enumeration and the contributions correspond- 
ing to configurations with three or more components by the general methods of § 3 : 
the contributions from configurations with a discriminant of two (doublets) then follow 
algebraically by the methods of 9 4. 

We have determined all the partial codes F," for the triangular lattice for all n through 
w = 21. These provide all the sublattice polynomials ( I I , §  1 and equation (1.7)) for the 
honeycomb lattice. The partial codes and sublattice polynomials are too extensive to 
be quoted in full. We give in the appendix the ferromagnetic polynomials $ 1 7 ,  $ 8, II/ I 9, 

$zo,  $ 2 1  for the triangular and honeycomb lattices. For these the values of $,, ( p  = 1) 
and i3$"/dp (p = 1) are in agreement with the exact solution for the zero-field partition 
function and the spontaneous magnetization. The corresponding ferromagnetic 
susceptibility can be extended by five coefficients in each case to continue IV, equations 
(3.3) and (3.4): 

= . . . +50 369 7 6 0 ~ "  + 56 095 776~"+484 296 732u19+571 273 3 4 4 ~ ~ '  

+ 4  628 107 216u2' + . . . 

zHC f = . . .  + 2  154378816z1'+8395571 7 1 2 ~ ' ~ + 3 2 6 3 9 7 5 0 6 7 6 z ~ ~  

+ 126 625 222 20Oz2O +490 300 659 692z2' + . . . . 
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The partial codes determine five new antiferromagnetic polynomials to supplement I 
(appendix 5), and IV (equation (3.6)): 

2$;7 = 28661781+4614383+5768, 

2$; = 1 080 6414 + 469 3 1802 + 30 4888, + 7238, 

2$t9 = 2 729 88901 + 536 38803 + 12 9608, 

2+;0 = 1 0 2 9 7 0 ~ $ + 4 8 5 0  i39e2+430 i49;e4+3 216e6 

2$;' = 27 003 275e1 + 6 216 I 1 le3  + 238 11 18, + 355+e7 

(5.3) 

and from these, or from (5.1) and (5.2) using I1 (4.22), the corresponding antiferromagnetic 
susceptibility can be extended by five coefficients to continue IV, equation (3.5): 

x& = .  . .  + 2 8 6 5 2 1 6 ~ ' ~ + 9 4 7 0 7 8 4 ~ ' ~ + 3 1  525524y'9+105594912y20 

+ 355 673 804y2' + . . . . (5.4) 
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Appendix 

Ferromagnetic polynomials $(p) (for earlier terms see appendix to IVt). 

Triangular lattice 

II/ 1 7  = 3p24 + 2 7 ~ ~ ~  + 1 4 7 ~ ~ '  + 5 0 7 , ~ ~  + 1 401p'O + 2 943p' + 5 412p' + 8 679p' 

+ 11 7 8 4 p  + 13 4 1 9 p  + 11 1O3pl4 + 6 7 4 1 ~ ' ~  - 9 036p" - 21 6 2 1 ~ '  ' 
- 42 3 15p" - 1 1 109p9 + 30 825p8 + 63 870p7 + 27 555p6 

$ 1 8  = 2pZ7+24pz6+ 1 2 8 ~ ' ~ + 4 9 6 p ~ ~ + l  458p23+3424p22+6936p21+11 9 6 9 ~ ~ '  

+ 19 168p' + 26 0 3 8 p  + 31 090p' + 29 8 7 7 p  + 23 046p' + 2 1 3 % ~ ' ~  

- 30 902p1 - 65 8 2 9 ~ ' '  - 11 1 460p' ' - 48 618+p1O + 43 8 6 8 % ~ ~  

+ 165 8 9 4 4 ~ ~  - 307 476p7 - 7 7 9 6 % ~ ~  

$19 = 3p3O+27pZ9+ 1 4 7 ~ ~ ' + 5 7 9 ~ ~ ~ + 1  719p26+4338p'5+9 138pZ4+ 17 1 1 5 ~ ' ~  

+28 8 0 9 / ~ ~ ~ + 4 3  893p" +60 543pZ0+71 820p19+77 3 2 5 ~ ' ~  

+ 64 8 3 0 ~ '  + 38 9 4 6 p  - 25 3 5 9 ~ '  - 80 9 4 0 ~ ' ~  - 195 3 12p1 

- 224 955p" - 136 956p" + 205 386p" + 375 483p9 - 58 668p8 

+ 437 997p7 

t The coefficient of pa in $ , 6  for the honeycomb lattice is there printed with incorrect sign and should read 
-74083&* in agreement with L,  given in I (appendix). 
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$20 = 6p" +42p32 + 216p3' + 798~'' + 2  4 1 2 ~ ~ ~  + 6  0 6 0 ~ ~ ~  + 13 128pZ7 +25 6 2 6 ~ ~ ~  

+44514pz5+72 105p24+105816p23+142956p22+ 171 300p2' 

+ 187 158p2'+ 175416pI9+ 120099p'8+23 7 3 0 ~ ' ~ -  123 5 5 2 ~ ' ~  

-288 768pI5-563 163p1'-549 690p1'-466 116p1'+473 9 7 6 ~ "  

+ 663 288p" + 408 072p9 - 1 907 846&p8 - 275 184p7 

$21 = p37+14p36+87p35+392p34+1 341p33+3918p32+9632p31+21 O83p3O 

+41040p29 +73 578p2* + 121 8 0 4 ~ ~ ~  + 186 2 3 5 ~ ~ ~  +266 341p2' 

+ 347 2 . 5 0 ~ ~ '  + 420 6 7 7 ~ ~ '  + 456 5 7 5 ~ ~ ~  + 456 246p2' + 345 275p20 

+177611p19-110316p18-440030p'7-961 349pI6-1 312 1 9 4 ~ "  

- 1423 670p1'-779 2 8 5 ~ ' ~  + 1264 848p1'+2 435 614p" + 1 680030p'0 

-3019 394p9+4905025p8+65 718+p7 

Honeycomb Lattice 

$ 1 7  = 3p47+21p45+108p43+423p41+1 4 2 2 ~ ' ~ + 4  170p37+10899p35+25782p33 

+ 55 107p" + 106 3 8 0 , ~ ~ ~  + 184 4 1 3 ~ ~ ~  + 279 8 5 5 ~ ~ ~  + 357 8 8 8 ~ ~ ~  

+ 341 7 0 6 ~ ~ '  + 103 5 0 3 ~ ' ~  -438 6 0 0 ~ ' ~  - 1045 9 3 5 ~ ' ~  -71 1 8 0 1 ~ ' ~  

+ 1 409 742p" - 367 878p9 + 16 128p7 

$18 = 3p54+7p52+433/i50+ 196p48+721ip46+2 3 1 6 ~ ' ~ + 6  5 9 5 ~ ' ~ +  17O393p4O 

+40208p38+87091p36+173 843+p3'+317 845p32+5292863p30 

+ 792 1 0 5 ~ ~ ~  + 1 028 767ip26 + 1 085 0 5 9 4 ~ ~ '  + 708 8 0 9 ; ~ ~ ~  

- 398 4 6 7 3 ~ ~ ' -  2 171 765fpI8 - 3 392 0 6 9 ~ ' ~  - 1 106 33%~' '  

+ 4 905 5 3 6 2 ~ ' ~  - 1 706 9883p10 + 120 844p8 - 495$p6 

$19 = 3p59 + 2ipS7 + 1 0 8 p  + 4 2 9 , ~ ~ '  + 1 4 6 7 ~ ~ '  + 4  43 1p49 + 12 1 1 4 ~ ' ~  + 30 4 2 0 ~ ~ ~  

+ 70 545~'' + 152 EOp" + 305 6 3 7 ~ ' ~  + 571 4 7 9 ~ ' ~  +992 772,~" 

+ 1  588965p33+2318640p31+3018270p29+3324459p27 

+ 2 706 0 5 7 ~ ~ ~  +487 4 2 8 ~ ~ ~  - 3 777 609,~" - 8 836 6 7 7 ~ ' ~  - 9 879 4 9 2 ~ ' ~  

+589338p1'+ 16327032p" -7495464p"+776475pg-9 831p7 

$ 2 0  = 1 3 ~ ~ 6 4 + 7 3 ~ ~ 6 2 + 3 1 ~ p 6 0 +  1 099fpS8+3447ps6+9 771p5'+25 4 4 6 ~ ' ~  

+61 500p5'+ 138 8 8 8 ~ ' ~ + 2 9 4  511$p46+586908p44+ 1 101 562tp'' 

+ 1 942245p4'+3 209931p38+4944511~p36+7017 7 7 1 ~ ~ '  

+9029640$32+10 163883p3'+9 107567$~ '~+4374 1 . 5 0 ~ ~ ~  

-5401 5 4 5 ~ ~ 2 4 - 1 9 7 3 4 0 0 7 ~ p 2 2 - 3 1 6 6 3  835$pz0-24921 1 4 7 ~ "  

+ 15 503661p16+51 659 5 8 7 3 ~ ' ~ - 3 1  39022Gp'2+4480345$p'0 

- 114 043ip8 
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7 3  
$2 1 = p + 12p7 ’ + 6 4 ~ ~ ~  + 2 7 8 ~ ~ ~  + 9 9 9 ~ ~ ~  + 3 1 8 2 ~ ~ ~  + 9 165p6 ’ + 24 3 0 6 ~ ~ ~  

+6O044ps7+ 139 116p’5+303995p53+628456p’’+ 1232 1 6 6 ~ ~ ~  

+2292 792p4’+4046 141p4’+6 765 1 0 6 7 6 0 4 4 ~ ~ ’  

+ 15 824 8 4 6 ~ ~ ~  + 21 840 7 6 0 ~ ~ ~  +27 624 314p3’ + 31 188 8 1 2 ~ ~ ~  

+29 465 072p” + 18 559 819pZ9 -4 700 234p” -41 340 065p2’ 

-83441 107p23-101 586 109p2’-47879 154p1’+91 3063P7pl7 

+ 153 554 339p” - 125 973 0 7 7 ~ ’ ~  +23 835 698p’ ’ - 1 007 093p9 

+ 2 428$p7 
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